

Track4 "Foot-Mounted IMU (offsite-online)" special features

Organizational aspects:

Database/dataset access

As initiated last in Spain in 2021, Track4 is now an "offsite-online" track. That means, we ask to
competitors to process data as if they were in real time. To do so, an interface based on a web API
has been developed: EvaalAPI. This API will be used by competitors for sending position estimates
and reading the sensor values:

NUREMBERG

https://evaal.aaloa.org/evaalapi/

- In the context of this EvaalAPI framework, two "scoring trial" ("scoring trial#1" and "scoring trial#2" described later) will be proposed to competitors. **Each of these scoring trial will be usable only once**. Competitors have thus two trials, for the evaluation.
- In order to help competitors to be prepared for the evaluation, a "testing trial" is proposed. This "testing trial" is fully accessible or reloadable (ie not restricted to a single usage as scoring trials). GroundTruth positions are included in the "testing trial" under the POSI label, for validation purpose.
- Extract from https://evaal.aaloa.org/2023/call-for-competition : "OFFSITE-ONLINE TRACKS : Competitors are provided with sensors data and use them to estimate the user position. Competitors calibrate their algorithms in advance using ground truth reference data (testing trials) and compete using new unreferenced data (scoring trials). Competitors run their Trials through the EvaalAPI in the usual online mode to emulate the causal, real-time behavior of onsite Tracks. Scoring trials are run on a Track-specific day during the second week of September."

Competitor admission process / Application:

• See: <u>https://evaal.aaloa.org/2023/call-for-competition</u>

Submission of the processed results

- As mentioned earlier, results have to be submitted via a web API. See above.
- A participant team can run the process up to 2 times. This lets a chance to catch-up if any issues happen. Although the competition organizers will evaluate the two scoring trials, only the best one will be considered for the contest. These two datasets correspond to two different data collection performed on the same path but not at the same time.

Important deadlines:

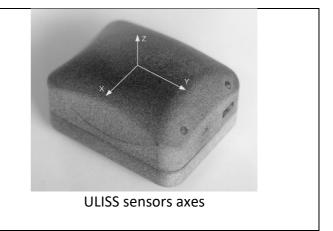
- Technical annexes published
- "testing trial" is accessible by files
- Application deadline
- "testing trial" is accessible through web API
- "scoring trial#1" and "scoring trial#2" will be accessible
- Proclamation of winners

April, 2023 April, 2023 May 31st, 2023 June, 2023 TBD (in September) September 28th, 2023

<u>Scope</u>

Many indoor navigation systems have been developed for pedestrians and assessing their performances is a real challenge. Benefiting from a reference solution that is accurate enough to evaluate other indoor navigation systems and assist novel research is of prime interest. According to ISO18305:2016 two different ways can be used for assessing indoor localization system: "Off-line surveyed test point" that is commonly used, or "reference system" with an accuracy at least one order of magnitude better the system you want to test. The scope of this track4 is clearly focused on the second way of assessing.

NUREMBERG


This track4 is based on the same equipment named "ULISS" as previous competitions hold during IPIN2022 and IPIN2021.

Competition Goal

The goal of this competition is to evaluate how good up-to-date INS algorithm is. Each competitor will have access to a dataset logged with ULISS (Ubiquitous Localization with Inertial Sensors and Satellites), a state-of-the-art Inertial Navigation System producing IMU data, MAG data, PRESSURE data & GNSS data, without the help of any maps.

on the starting point.

Description of Datasets

Data is recorded from 3 different sensors:

Xsens Mti-7	IMU-Mag sensor:
ALC: NO DE LA CONTRACTION DE LA CONTRACTICA DE L	-3D accelerometer
	-3D gyrometer
- Contraction of the second se	-3D magnetometer
	https://www.xsens.com/mti-7
BMP280 sensor	Operation range: Pressure: 3001100 hPa
2280	Absolute accuracy : ~ ±1 hPa
	Relative accuracy : ± 0.12 hPa (typical)
-	https://www.bosch-sensortec.com/products/environmental-
	sensors/pressure-sensors/bmp280/
Ublox ZED-F9P dual freq. receiver	Multi GNSS Receiver : BeiDou, Galileo, GLONASS, GPS / QZSS
	Number of concurrent GNSS 4

Unit and meaning of the sensors outputs of ULISS are the following ones:

Column	Xsens MTi-1 (accelerometer)	Comments
1	Acceleration label	"ACCE"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Acc X (m/s ²)	
4	Acc Y (m/s ²)	
5	Acc Z (m/s ²)	

Sample strings for accelerometer data

ACCE, 314410.003952000, -1.25709, -4.34142, 8.75831 ACCE, 314410.008947000, -1.23771, -4.28408, 8.72497	
ACCE, 314410.013942000, -1.26714, -4.3795, 8.72491	
ACCE, 314410.018937000, -1.26167, -4.29823, 8.71566	
ACCE, 314410.023932000, -1.25662, -4.26479, 8.71095	

Column	Xsens MTi-1 (gyrometer)	Comments
1	Gyrometer label	"ROTA"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Gyro X (rad/s)	
4	Gyro Y (rad/s)	
5	Gyro Z (rad/s)	

Sample strings for gyrometer data

ROTA, 314410.004573000, 0.00275338, -0.000805736, 0.006387	
ROTA, 314410.009578000, -0.00576329, -0.00401807, 0.00535798	
ROTA, 314410.014582000, 0.00813067, 0.00989926, 0.00747764	
ROTA, 314410.019587000, 0.00594413, -0.00079453, 0.00529695	
ROTA, 314410.024591000, 0.00488472, 0.00237882, 0.0117271	

Column	Xsens MTi-1 (magnetometer)	Comments
1	Magnetometer label	"MAGN"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Mag X (a.u.)	a.u. = arbitrary unit according to Xsens.
4	Mag Y (a.u.)	Tips : multiply by 0.49*1000,
5	Mag Z (a.u.)	In order to get milliGauss (mG)

Sample strings for magnetometer data

MAGN, 314410.005162000, 0.224368, 0.435266, -1.14962	
MAGN, 314410.015162000, 0.22387, 0.434764, -1.14766	
MAGN, 314410.025162000, 0.222876, 0.438141, -1.1481	
MAGN, 314410.035162000, 0.223393, 0.433828, -1.14817	
MAGN, 314410.045162000, 0.224333, 0.431291, -1.1413	

Column BMP280 (pressure)		Comments
1	Pressure sensor label	"PRES"
2	2 GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Pressure (Pa)	

Sample strings for pressure data

PRES, 314410.005162000, 101144	
PRES, 314410.025162000, 101152	
PRES, 314410.045162000, 101138	
PRES, 314410.065162000, 101151	
PRES, 314410.085162000, 101151	

Column	Temperature (temperarure)	Comments
1	Temperature sensor label	"TEMP"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Temperature (Degree Celsius)	

Sample strings for temperature data

	0	
TEMP,	314410.025162000,	,44.1914
TEMP,	314411.025162000,	,44.1758
TEMP,	314412.025162000,	,44.1758

Column	Ublox F9P GNSS receiver (SBS)	Comments
3 Hexadecimal WORD Correspo		"GSBS"
		GPS Time of Week (ToW) in second
		Corresponds to EGNOS SBAS Message Format*
*: https://gssc.esa.int/navipedia/index.php/The EGNOS SBAS Message Format Explained		

Sample strings for SBS (SBAS – EGNOS) data

GSBS, 315499, 9A494C0000000000000400001F00003F80003FC0003FE0001FF0001FF80 GSBS, 315618, 5363FBFFDC0000000000197BBBAA01848160A0580B185BFDFEF980900 GSBS, 315619, 9A0A8003FE4027FFBFC7FEFFD4003FEC000003FB8003959559797BA380

Column	Ublox F9P GNSS receiver (SBS)	Comments
1	GNSS Observation label	"GOBS"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	Observation data	Observation file based on RINEX 3.04 format http://rtcm.info/RINEX 3.04.IGS.RTCM Final.pdf Only data after header* is used in the context of IPIN2021-Track4.

*Header of "OBSERVATION DATA" file under Rinex 3.04 format are given later in each session specific parts (headers are slightly different).

Sample strings for OBS (observation file, based on RINEX 3.04 format) data

•	0	•	,		,		
GOBS,31485	6.199000	000,G04	24066762.037	8 126471694.10925	-3666.900	39.000	
GOBS,31485	6.199000	000,G09	21204418.682	8 9	-2579.258	24.000	
GOBS,31485	6.199000	000,G06	21843663.561	9 9	-3361.335	14.000	
GOBS,31485	6.199000	000,C24	24066200.488	4 9	-1496.777	42.000	
GOBS,31485	6.199000	000,C09	41038802.886	9 213699815.76337	-1391.943	30.000	

THRTEENTH INTERNATION INDOOR POSITION AND INDOOR NA 25th-28th Sep. 2023, Nu	ONING AVIGATION	NURE	MBERG		Version 2.0 (July 13th, 2023)
GOBS, 314856.199000000, R10	20885796.375 8	111333055.23728	-1125.414	35.000	
GOBS, 314856.199000000, R17	21027399.505 9	112521861.85837	1.771	31.000	
GOBS, 314856.199000000, G16	24420695.497 9		-607.284	34.000	
GOBS, 314856.199000000, E25	26416183.541 9	-	1623.139	22.000	
GOBS, 314856.199000000, R09		-	-3901.952	26.000	
GOBS, 314856.199000000, E24			-857.287	38.000	
GOBS, 314856.199000000, E05			-2871.781	35.000	
GOBS, 314856.399000000, GO4		126472426.50726	-3656.825	35.000	
GOBS, 314856.399000000, G09			-2576.887	25.000	
GOBS, 314856.399000000, G06			-3361.335	14.000	
GOBS, 314856.399000000, C24		125319321.10437	-1491.643	44.000	
GOBS, 314856.399000000, C09		213700093.52228	-1387.629	30.000	
GOBS, 314856.399000000, R10	20885839.907 8	111333279.85427	-1119.290	37.000	
GOBS, 316465.400000000, G09 9 -2311.088	22053796.355 9 23.000	7	-2965.625	42.000	22053774.011 9
GOBS, 316465.40000000, G06		9	-3890.580	43.000	22958742.892 9
	22958748.485 8 18.000	9	-3690.580	43.000	22930142.892 9
GOBS, 316465.40000000, G04	25190987.721 9	9	-3672.705	35.000	
GOBS,316465.40000000,G20	20618874.632 4	9	1326.448	48.000	
GOBS, 316465.40000000, G07	20956968.745 8	9	-528.696	32.000	
GOBS, 316465.40000000, C14	26537412.626 9	9	-3269.531	39.000	

Column	ground truth position	Comments
1	ground truth position label	"POSI"
2	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
3	WGS84 longitude in decimal degrees	
4	WGS84 latitude in decimal	
5	Floor Number in integer	0 : Ground Floor, -1, 1, 2
6	POSI number index	

Sample strings for ground truth position data
POSI, 308945.294, -1.6313191524195993, 47.22617430160391, -1, 1
POSI, 308960.836, -1.6310604539849840, 47.22612380681056, -1, 2

Note1: POSI frame is only used twice in scoring trials. For the first Key Point (n°1) and the second Key Point (n°2).

Note2: POSI frame is used in testing trial to help competitors to tune their algorithm.

...

Testing Trial#1: dataset recorded around 15h45 (local time), the 15th of September 2021 in Nantes

NUREMBERG

The materials and methods provided by the competition organizers are:

Туре	Description	URL to download
Testing Trial#1	CSV file containing all data as described in	https://evaal.aaloa.org/files/2022/
5 5	section "Description of Datasets".	IPIN2022 T4 Trials.7z
	GroundTruth is given inside	
	IPIN2022_T4_TestingTrial01.txt under POSI	
	frames.	
Allan Variance	static logfile of more than 15 hours that can	http://evaal.aaloa.org/images/2021/
	be used for sensors bias estimation.	track4/2021.09 ULISS AllanVariance.zip
Magnetometer	logfile of about 1 minute that can be used	http://evaal.aaloa.org/images/2021/
Calibration	to calibrate the magnetometer sensor	track4/2021.09.15 ULISS MagCalib.zip
GNSS	contains ephemeris data for those who	http://evaal.aaloa.org/images/2021/
Navigation	want to use GNSS sensor.	track4/session1 gnss.nav
file	(format RINEX 3.04)	
GNSS	3.04 OBSERVATION DATA M: Mix RTKCONV demo5 b34c 202109	xed RINEX VERSION / TYPE 030 154220 UTC PGM / RUN BY / DATE
Observation	format: u-blox UBX	COMMENT
header	log: D:\IPIN2021\DataCollection\2021.09.15_15	130_Acquil\ULISCOMMENT MARKER NAME
		MARKER NUMBER MARKER TYPE
		OBSERVER / AGENCY
		REC # / TYPE / VERS ANT # / TYPE
	4337853.3676 -123576.7925 4658733.9793	APPROX POSITION XYZ
	0.0000 0.0000 0.0000 G 8 C1C L1C D1C S1C C2X L2X D2X S2X	ANTENNA: DELTA H/E/N SYS / # / OBS TYPES
	R 8 C1C L1C D1C S1C C2C L2C D2C S2C	SYS / # / OBS TYPES
	E 8 C1X L1X D1X S1X C7X L7X D7X S7X S 4 C1C L1C D1C S1C	SYS / # / OBS TYPES SYS / # / OBS TYPES
	C 8 C2I L2I D2I S2I C7I L7I D7I S7I	SYS / # / OBS TYPES
	2021 09 15 13 48 01.2070000 2021 09 15 14 33 04.2070000	GPS TIME OF FIRST OBS GPS TIME OF LAST OBS
	G L1C	SYS / PHASE SHIFT
	G L2X -0.25000 R L1C	SYS / PHASE SHIFT SYS / PHASE SHIFT
	R L2C E L1X 0.00000	SYS / PHASE SHIFT SYS / PHASE SHIFT
	E L7X 0.00000	SYS / PHASE SHIFT
	S L1C C L2I	SYS / PHASE SHIFT SYS / PHASE SHIFT
	C L7I	SYS / PHASE SHIFT
	12 R01 1 R02 -4 R07 5 R08 6 R09 -2 R10 -7 R17 4 R22 -3 R23 3 R24 2	R11 0 R16 -1 GLONASS SLOT / FRQ # GLONASS SLOT / FRQ #
	C1C 0.000 C1P 0.000 C2C 0.000 C2P	0.000 GLONASS COD/PHS/BIS END OF HEADER
RINEX 3.04	Specification of RINEX format	http://evaal.aaloa.org/images/2021/
spec	The Receiver Independent Exchange	track4/RINEX 3.04.IGS.RTCM Final.pdf
	Format, Version 3.04	· · · · · · · · · · · · · · · · · · ·
L		

- Key Points:
 - 84 key points re listed in this Testing Trial, under POSI lines in both IPIN2022_T4_TestingTrial01.txt, and EvaalAPI datastream.

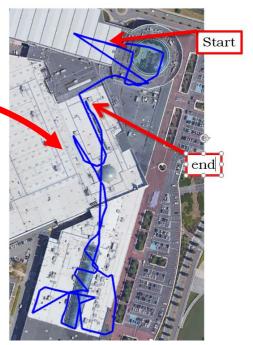
second (~2Hz), synchronized with the evaal data stream, and thus corresponding to the end of each dataset window of 0.5s.

NUREMBERG

- The output format is described in the chapter "Description of the Output File" here after. ο
- Points given in order to get a good first heading:
 - **Coordinates of Key Point n°1:** ο
 - **GPS Time of Week in seconds:** 308945.294
 - WGS84 longitude in decimal degrees: -1.631319152
 - WGS84 latitude in decimal degrees:
 - Floor Number in integer:
 - **Coordinates of Key Point n°2:** ο

•	GPS Time of Week in seconds:	308960.836
	GPS TIME OF WEEK IN SECONDS.	508900.850

- WGS84 longitude in decimal degrees:
- WGS84 latitude in decimal degrees:
- Floor Number in integer:


5 -1.631060453 47.226123806 -1

-1

47.226174301

Bird view:

Version 2.0

Version 2.0 (July 13th, 2023)

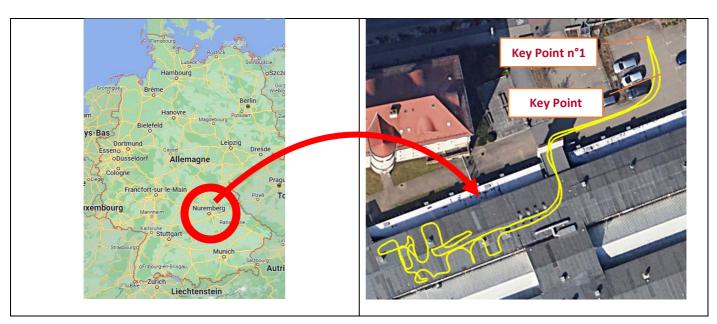
Туре	lataset recorded around 11h30 (local time), Description	URL to download
Testing Trial#2	CSV file containing all data as described in	https://evaal.aaloa.org/files/2023/
0	section "Description of Datasets".	IPIN2023 T4 TestingTrial02.txt.xz
	GroundTruth is given inside	
	-	
	IPIN2023_T4_TestingTrial02.txt under	
	POSI frames.	
Allan Variance	static logfile of about 12 hours that can be	https://evaal.aaloa.org/files/2023/
	used for sensors bias estimation.	IPIN2023 T4 calibration/
		IPIN2023 T4 ULISS AllanVariance.7z
Magnetometer	logfile of about 1 minute that can be used	https://evaal.aaloa.org/files/2023/
Calibration	to calibrate the magnetometer sensor	IPIN2023 T4 calibration/
		IPIN2023 T4 ULISS MagCalib.7z
GNSS	contains ephemeris data for those who	https://evaal.aaloa.org/files/2023/
Navigation	want to use GNSS sensor.	IPIN2023 T4 calibration/
file	(format RINEX 3.04)	IPIN2023 T4 Trial gnss ephem.nav
GNSS	3.04 OBSERVATION DATA M: Mix	
		13 083128 UTC PGM / RUN BY / DATE
Observation	<pre>format: NovAtel OEM7 log: D:\IPIN2023\PROPACK\Rover\NMND21380003K_2</pre>	COMMENT 2023-06-14 09-4COMMENT
header		MARKER NAME
		MARKER NUMBER MARKER TYPE
		OBSERVER / AGENCY
		REC # / TYPE / VERS
	0.0000 0.0000 0.0000	ANT # / TYPE APPROX POSITION XYZ
	0.0000 0.0000 0.0000	ANTENNA: DELTA H/E/N
	G 12 C1C L1C D1C S1C C2W L2W D2W S2W C5Q L5Q	
	R 8 C1C L1C D1C S1C C2P L2P D2P S2P E 8 C1C L1C D1C S1C C70 L70 D70 S70	SYS / # / OBS TYPES
	E 8 C1C L1C D1C S1C C7Q L7Q D7Q S7Q C 16 C2I L2I D2I S2I C7I L7I D7I S7I C7D L7D	SYS / # / OBS TYPES D7D S7D C5P SYS / # / OBS TYPES
	L5P D5P S5P	SYS / # / OBS TYPES
	2023 06 14 09 35 11.2000000 2023 06 14 09 45 25.4000000	GPS TIME OF FIRST OBS
	2023 06 14 09 45 25.4000000 G L1C	GPS TIME OF LAST OBS SYS / PHASE SHIFT
	G L2W 0.00000	SYS / PHASE SHIFT
	G L5Q -0.25000	SYS / PHASE SHIFT
	R L1C R L2P 0.25000	SYS / PHASE SHIFT SYS / PHASE SHIFT
	E L1C 0.50000	SYS / PHASE SHIFT
	E L7Q -0.25000	SYS / PHASE SHIFT
	C L2I	SYS / PHASE SHIFT SYS / PHASE SHIFT
	C L7I C L7D	SIS / PHASE SHIFT SYS / PHASE SHIFT
	C L5P 0.25000	SYS / PHASE SHIFT
	1 R09 -2	GLONASS SLOT / FRQ #
	C1C 0.000 C1P 0.000 C2C 0.000 C2P	0.000 GLONASS COD/PHS/BIS END OF HEADER
RINEX 3.04	Specification of RINEX format	http://evaal.aaloa.org/images/2021/
RINEX 3.04 spec	Specification of RINEX format The Receiver Independent Exchange	http://evaal.aaloa.org/images/2021/ track4/RINEX_3.04.IGS.RTCM_Final.pd

NUREMBERG

- Note about Maps use
 - Even if maps may be allowed in others tracks, for this one, it is NOT. Track chairs, in such a case, could cancel contributions of competitor.
 - o Algorithms are not supposed to embed or access maps to enhance positioning.

- **Key Points:**
 - o 30 key points re listed in this Testing Trial, under POSI lines in both IPIN2023 T4 TestingTrial02.txt, and EvaalAPI datastream.
 - o Evaluation is based like other Tracks: i.e. position has to be computed and sent twice a second (~2Hz), synchronized with the evaal data stream, and thus corresponding to the end of each dataset window of 0.5s.

NUREMBERG


- The output format is described in the chapter "Description of the Output File" here after.
- Points given in order to get a good first heading:
 - o Coordinates of Key Point n°1:

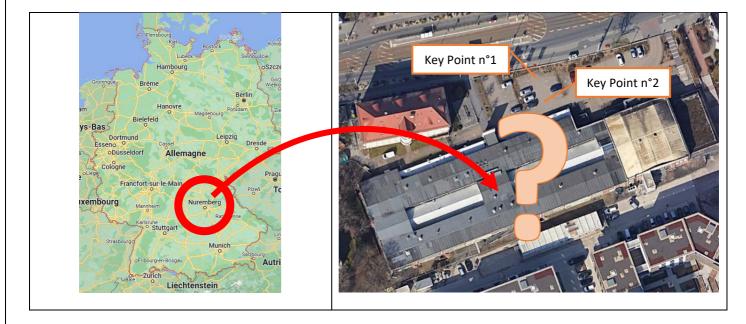
NTH INTERNATIONAL CONFERENCE ON

INDOOR POSITIONING

AND INDOOR NAVIGATION 25th-28th Sep. 2023, Nuremberg Germany

- **GPS Time of Week in seconds:** 293919.833
- WGS84 longitude in decimal degrees: 11.111207986 49.461512004
- WGS84 latitude in decimal degrees: Floor Number in integer: 0
- **Coordinates of Key Point n°2:** 0
 - **GPS Time of Week in seconds:** 293973.817 WGS84 longitude in decimal degrees: 11.111139902 49.461529297
 - WGS84 latitude in decimal degrees: 0
 - Floor Number in integer:
- **Bird view:**

NUREMBERG	
	Versi (July 13th,


ion 2.0 2023)

<u>Scoring Trial#1: </u> c	lataset recorded around 12h20 (local time),	the 14th of June 2023 in Nuremberg
Туре	Description	URL to download
Testing Trial#2	SCORING TRIAL is only accessible via EvaalAPI	-
Allan Variance	static logfile of about 12 hours that can be used for sensors bias estimation.	https://evaal.aaloa.org/files/2023/ IPIN2023 T4 calibration/ IPIN2023 T4 ULISS AllanVariance.7z
Magnetometer Calibration	logfile of about 1 minute that can be used to calibrate the magnetometer sensor	https://evaal.aaloa.org/files/2023/ IPIN2023 T4 calibration/ IPIN2023 T4 ULISS MagCalib.7z
GNSS Navigation file	contains ephemeris data for those who want to use GNSS sensor. (format RINEX 3.04)	https://evaal.aaloa.org/files/2023/ IPIN2023 T4 calibration/ IPIN2023 T4 Scoring1 gnss ephem.na v
GNSS Observation header		Mixed RINEX VERSION / TYPE 712 153016 UTC PGM / RUN BY / DATE COMMENT Ce-703\gnss.ubxCOMMENT MARKER NAME MARKER NUMBER MARKER TYPE OBSERVER / AGENCY REC # / TYPE / VERS ANT # / TYPE APPROX POSITION XYZ ANTENNA: DELTA H/E/N SYS / # / OBS TYPES SYS / PHASE SHIFT SYS / PHASE SHIFT
RINEX 3.04	Specification of RINEX format	http://evaal.aaloa.org/images/2021/
spec	The Receiver Independent Exchange	track4/RINEX 3.04.IGS.RTCM Final.pdf
	Format, Version 3.04	

Note about Maps use

- Even if maps may be allowed in others tracks, for this one, it is NOT. Track chairs, in such a case, could cancel contributions of competitor.
- Algorithms are not supposed to embed or access maps to enhance positioning.
- Key Points:
 - \circ $\,$ We target between 80 and 100 key points for evaluation of Track4 $\,$

- Evaluation is now based like other Tracks: i.e. position has to be computed and sent twice a second (~2Hz), synchronized with the evaal data stream, and thus corresponding to the end of each dataset window of 0.5s.
- The output format is described in the chapter "Description of the Output File" here after.
- Points given in order to get a good first heading:
 - Coordinates of Key Point n°1:
 - GPS Time of Week in seconds:
 - WGS84 longitude in decimal degrees: coming soon
 - WGS84 latitude in decimal degrees:
 - Floor Number in integer:
 - Corresponding POSI line: coming soon
 - Coordinates of Key Point n°2:
 - GPS Time of Week in seconds:
 - WGS84 longitude in decimal degrees:
 - WGS84 latitude in decimal degrees:
 - Floor Number in integer:
 - Corresponding POSI line: coming soon
- Bird view:

coming soon

coming soon

coming soon

0

0

coming soon coming soon

25th-28th Sep. 2023, Nuremberg Germany

Version 2.0 (July 13th, 2023)

coring Trial#2: C	lataset recorded around 15h00 (local time),	the 14th of June 2023 in Nuremberg
Туре	Description	URL to download
Testing Trial#2	SCORING TRIAL is only accessible via EvaalAPI	-
Allan Variance	static logfile of about 12 hours that can be used for sensors bias estimation.	https://evaal.aaloa.org/files/2023/ IPIN2023 T4 calibration/ IPIN2023 T4 ULISS AllanVariance.7z
Magnetometer Calibration	logfile of about 1 minute that can be used to calibrate the magnetometer sensor	https://evaal.aaloa.org/files/2023/ IPIN2023 T4 calibration/ IPIN2023 T4 ULISS MagCalib.7z
GNSS Navigation file	contains ephemeris data for those who want to use GNSS sensor. (format RINEX 3.04)	https://evaal.aaloa.org/files/2023/ IPIN2023 T4 calibration/ IPIN2023 T4 Scoring2 gnss ephem.na v
GNSS Observation header		Mixed RINEX VERSION / TYPE Pl2 153520 UTC PGM / RUN BY / DATE COMMENT ce-704\gnss.ubxCOMMENT MARKER NAME MARKER NUMBER MARKER TYPE OBSERVER / AGENCY REC # / TYPE / VERS ANT # / TYPE APPROX POSITION XYZ ANTENNA: DELTA H/E/N SYS / # / OBS TYPES SYS / PHASE SHIFT SYS / PHASE SHIFT
RINEX 3.04 spec	Specification of RINEX format The Receiver Independent Exchange	http://evaal.aaloa.org/images/2021/ track4/RINEX 3.04.IGS.RTCM Final.pdf

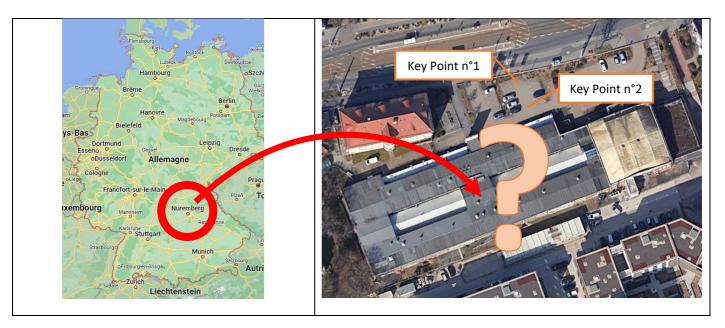
...

• Note about Maps use

- Even if maps may be allowed in others tracks, for this one, it is NOT. Track chairs, in such a case, could cancel contributions of competitor.
- Algorithms are not supposed to embed or access maps to enhance positioning.

• Key Points:

Version 2.0


(July 13th, 2023)

• We target between 80 and 100 key points for evaluation of Track4

 Evaluation is now based like other Tracks: i.e. position has to be computed and sent twice a second (~2Hz), synchronized with the evaal data stream, and thus corresponding to the end of each dataset window of 0.5s.

NUREMBERG

- The output format is described in the chapter "Description of the Output File" here after.
- Points given in order to get a good first heading:
 - Coordinates of Key Point n°1:
 - GPS Time of Week in seconds:
 - WGS84 longitude in decimal degrees:
 - WGS84 latitude in decimal degrees:
 - Floor Number in integer:
 - Corresponding POSI line: coming soon
 - o Coordinates of Key Point n°2:
 - GPS Time of Week in seconds:
 - WGS84 longitude in decimal degrees:
 - WGS84 latitude in decimal degrees:
 - Floor Number in integer:
 - Corresponding POSI line: coming soon
- Bird view:

0

coming soon

coming soon

coming soon

coming soon coming soon coming soon 0

Description of the Output stream to return by competitor

For each scoring trial, competitor is asked to give processed data inside the field "position" of the *GET* /*TRIAL/nextdata* EvaalAPI request. The string "position" has to be composed of the 4 following fields:

- Field 1: WGS84 longitude in decimal degrees with at least 9 decimal digit resolution
- Field 2: WGS84 latitude in decimal degrees with at least 9 decimal digit resolution
- Field 3: Floor Number in integer (0 : Ground Floor, -1, 1, 2)
- Field 4: Incrementing counter starting from 1. 1 being the first point computed by competitor, 2 being the second, and so on...

Comma (",") has to be used as data delimiter.

Assessment will take into account the PTS (timestamp relative to the last position) return by *GET* /*TRIAL/estimates* EvaalAPI request.

Examples of successive string "position" included in GET/TRIAL/nextdata requests:

-1.542614572,47.217689856,0,1 -1.542614573,47.217689855,0,2 -1.542614574,47.217689854,2,3

Corresponding example of *GET/TRIAL/estimates* request:

```
pts,c,h,s,pos
217034.000,0.000,0.000,45.000,-1.542614572,47.217689856,0,1
217034.500,1662121746.081,0.500,43.762,-1.542614572,47.217689856,0,1
217035.000,1662121747.877,0.500,45.000,-1.542614573,47.217689855,0,2
217035.500,1662121749.670,0.500,45.000,-1.542614574,47.217689854,2,3
```


Evaluation criterion

The final metric will be based on the accuracy for the correct floor detection and the horizontal positioning error. In particular, the score for comparing the different location systems will be based on the following equations:

Accuracy Score = $3rdQuartile{SampleError(R_i, E_i)}, \forall$ groundtruth reference in all final test sets SampleError(R_i, E_i) = Distance(R_i, E_i) + (penalty × floorfail)

where:

- "3rdQuartile" is the third quartile error, in meters, of a cumulative error distribution function, i.e., the error value that includes 75% of estimations (sample errors) with a lower error.
- R_i is the actual position (ground truth).
- E_i is the predicted position by the method proposed by the contest participant.
- floorfail is the absolute difference between actual floor and the predicted one.
- penalty is used to penalize errors in estimating the floor. penalty is set to 15 m.
- Distance(R_i, E_i) calculates the Euclidean distance between coordinates (longitude and latitude) of R_i and E_i .

The team with the lower "Accuracy Score" wins.

Contact points and information

For any further question about the database and this competition track, please contact to:

- Miguel Ortiz (<u>miguel.ortiz@univ-eiffel.fr</u>) at the University Gustave Eiffel, France.
- Ni Zhu (<u>ni.zhu@univ-eiffel.fr</u>) at the University Gustave Eiffel, France.

Introduced changes

For any further question about the database and this competition track, please contact to:

Version 1.0	April 21 st	First version
	July 13 th	
Version 2.0	July 13	-Add of a second TrialTesting recorded on Nuremberg site
		-Add of 2 initialization Key Point and Bird view on
		TestingTrial#1