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1 Introduction

Radio-Frequency (RF) positioning in cluttered indoor environments is challeng-

ing. As signals travel through the environment along different paths it is difficult

to determine the correct time-of-arrival (TOA) of the transmitted signals. While

classical TOA based positioning algorithms can achieve high localization accu-

racies in line-of-sight (LOS) conditions, fingerprinting methods have been used

to estimate a rough position from narrow-band signals such as Wi-Fi or Blue-

tooth. However, with modern 5G new radio technologies, signals can be trans-

mitted at higher bandwidths, enabling a much higher spatial resolution from

which we can the extract complex propagation conditions such as absorption,

reflection, diffraction and scattering [1].

To leverage the benefits of the high spatial solution we can make use of

the channel state information (CSI). For sufficiently high bandwidths, the CSI

roughly corresponds to the complex-valued channel impulse response (CIR).

Recently, these signals have been used for positioning in different ways [2]:

• Model Error Mitigation: The CSI is used to classify propagation conditions

like non-line-of-sight (NLOS) or to estimate time-of-flight errors caused

by obstructed LOS (OLOS). This enhances classic tracking algorithms

by providing additional information on the channel states [3].

• Fingerprinting: The propagation conditions are assumed to cause signifi-

cant differences in the spatial behavior of the CSI, which can be exploited

by comparing them with previously recorded data (either using the CSI or

extracted features). For Machine Learning (ML) and Deep Learning (DL)

approaches this constitutes a regression task [4].

• Hybrid localization: Fingerprinting methods are combined with classical

mulilateration. As fingerprinting is only needed in NLOS dominated ar-

eas, a combination of both approaches can enhance the accuracy in

mixed (LOS / NLOS) environments [5].
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Figure 1: Image of the real world environment.

We present a dataset that contains a realistic indoor tracking scenario in an

industrial setting to allow a fair comparison of practical localization solutions.

2 Challenge Objectives

While the focus of last years challenges were on UWB radio signals with 500MHz

bandwidth, this year’s radio system has a lower bandwidth of only 100MHz. Fur-

thermore, the data is recorded by a smartphone carried by a person causing

additional shadowing by the persons body. We recorded the data in an envi-

ronment with heterogeneous radio propagation conditions as shown in Fig. 1.

There are areas with NLOS for the majority of the anchors, e.g., between the

shelves and close to the absorber walls, and there are more open sections with

LOS to most of the anchors. The provided training data covers only the areas

with dominated NLOS propagation. We therefore encourage the participants to

combine both, NLOS positioning (i.e., model error mitigation or fingerprinting)

and classical time-difference-of-arrival (TDOA) positioning, to achieve a overall

robust localization solution.
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3 Environment and Measurement Setup

The environment consist of a warehouse area of approx 1, 200m2 with an en-

closure by reflecting walls , consisting of the walls of the warehouse, including

metal gates. The environment contains various metal objects, like e.g., indus-

trial vehicles or metal shelves. Fig. 1 shows a picture of a part of the ware-

house. Eight Receiving anchors are placed at the walls of the environments in

different heights. The transmitter device is carried by a person at a constant

height of 1.05m and regularly transmits 5G signals received by the anchors.

The data is recorded by a 5G new radio platform with a bandwidth of 100MHz

and a center frequency of 3.75GHz. The ground truth position of the transmitter

is collected with a millimeter-accurate tracking system. The data is recorded

and synchronized by an NTP server and pre-processed (corrupted datapoints

are removed and RF and positioning reference data are synchronized).

4 Dataset description

The training dataset is provided as a .csv file. Each line of the file contains a

timestamp rec time ([float]) and a json string with one instance of mea-

surement data. The files contain the CSI and reference positions. Each data

instance (i.e. json-string ) contains:

• rec time ([float]): the timestamp in s at which the CIR was received

at the receiver node. (This is the ”global time index” of the tracking prob-

lem)

• window start time ([float]): timestamp in s, which indicates the start

time of the window of the CIR.

• TOA ([float]): TOA in s, which indicates the time of the first signal ar-

riving at the reciever. The tap within the CIR, which is identified as first

path, can be determined by subtracting the window start time from the

TOA.

• burst id ([int]): the receiver time index. This can be used for syn-

chronization. At each of the burst IDs, the transmitter (i.e., the mobile

node) transmits an impulse that is received by the receivers (i.e, anchors).

• csi real (array[int]) and csi imag (array[int]): the real and imag-

inary parts of the CSI as tuples. The CSI is centered around the first

distinct peak and contains 128 samples each, with a sampling frequency

of 184.32MHz.

• anch id ([string]): the anchor id of the receiving anchor.

• The positions of the agent (i.e. the mobile tag, the transmitter) ref x,

ref y as float. The reference positions are corresponding to the re-

ceiver timestamp rec time.
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Therefore the .json-string of each element has the form

{

rec_time: ...,

window_start_time: [...],

TOA: [...],

burst_id: ...,

csi_real: [...],

csi_imag: [...],

anch_id: "...",

}

the data can be downloaded at https://owncloud.fraunhofer.de/index.

php/s/GJ5fJDKl5xAjgID. There are three files, the training.csv in the .json

format, a experimental trial.csv with a short trajectory in the entire environ-

ment in the .json format and an additional .txt-file (anchors.txt) containing

the anchor/receiver positions is also available. It contains:

• anch ID [string] the anchor IDs.

• p x, p y [float] positions of the anchors.

For each setup (i.e. the trial) the initial position is available: It is [13.18, 18.16]m
for the experimental, [19.33, 11.40]m for the first scoring trial and [17.27, 17.94]m
for the second scoring trial.

4.1 Submission

The submission of results is done via the EvaalAPI ( https://evaal.aaloa.org/evaalapi/),

emulating a real-time localization setting. The general workflow for submission

is as follows:

1. the user initially requests the latest data (i.e. the sensor readouts of the

first 0.5 s) from the server, starting a new trial.

2. the user then estimates the position and sends it to the server. The server

then advances the locally maintained time by 0.5 s and sends all sensor

readouts that have occurred in this interval. This repeats until the trail

ends or an error occurs.

You find details on the API and related communication in the online documen-

tation on the website.

5 Evaluation metrics

The Euclidean distance between estimated and true results (each 2D-positions)

is the main evaluation metric. Specifically, third quartile is used as a perfor-

mance metric.
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6 Download

You can download the training and validation datasets at https://owncloud.

fraunhofer.de/index.php/s/GJ5fJDKl5xAjgID. Please don’t hesitate con-

tact us for any questions you might have.
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