
Track 7: Channel Impulse Responses
9th IPIN Competition off-site Indoor Localization, version 1.0

Sebastian Kram1 Luca Reeb1 Christopher Mutschler1

{firstname.lastname}@iis.fraunhofer.de

1Fraunhofer Institute for Integrated Circuits IIS

1 Introduction and Scope

Radio-Frequency (RF) positioning in cluttered indoor environments is challeng-

ing. As signals travel through the environment along different paths it is difficult

to determine the correct time-of-flight (TOF) of the transmitted signals. Tra-

ditionally, fingerprinting-based solutions have been used to estimate a rough

position from narrow-band signals such as Wi-Fi or Bluetooth. However, with

modern ultra-wideband (UWB) technology signals can be transmitted at higher

bandwidths, enabling a much higher spatial resolution from which we can the

extract complex propagation conditions such as absorption, reflection, diffrac-

tion and scattering [1]. While UWB is not yet integrated in consumer devices,

current progress in development and standardization make it likely that they will

be ubiquitous in the near future. This allows for low-cost ad-hoc positioning.

To leverage the benefits of the high spatial solution we can make use of

the channel information (CI). For sufficiently high bandwidths the CI roughly

corresponds to the complex-valued channel impulse response (CIR). Recently,

these signals have been used for positioning in different ways [2]:

• Model Error Mitigation: The CI is used to classify propagation conditions

like non-line-of-sight (NLOS) or to estimate time-of-flight errors caused

by obstructed LOS (OLOS). This enhances classic tracking algorithms

by providing additional information on the channel states [3].

• Fingerprinting: The propagation conditions are assumed to cause signif-

icant differences in the spatial behavior of the CI, which can be exploited

by comparing them with previously recorded data (either using the CI or

extracted features). For Machine Learning (ML) and Deep Learning (DL)

approaches this constitutes a regression task [4].

• Multipath-SLAM : The CI (or extracted multipath components, MPCs) are

used to jointly estimate virtual anchors (i.e. characteristic reflection points

caused by reflecting surfaces) and the trajectory of the transmitter. The

1

Figure 1: Image of an environment similar to the one used for the challenge.

main challenge is to correctly associate the extracted MPCs with specific

surfaces or reflecting objects [5].

Apart from these main concepts, various different or hybrid approaches ex-

ist, each of them with its distinct advantages or disadvantages. We present a

dataset that contains a realistic indoor tracking scenario in an industrial setting

to allow for a fair comparison for practical application.

While the focus of last year’s challenge was the adaption to changed en-

vironments, this year it is the generalization to another agent: For the training

and evaluation datasets, different agents, i.e., a mobile robot and a worker, are

tracked.

2 Environment and Measurement Setup

The environment consist of a warehouse area of approx 1, 200m2 with an en-

closure by reflecting walls (consisting of the walls of the warehouse, including

metal gates.) The environment contains various metal objects, like e.g. indus-

trial vehicles or metal shelves. Fig. 1 shows a picture of a part of the ware-

house. Receiving anchors are placed around the recording area at ∼ 1.5m
height. The transmitter device is carried by the mobile agent / tracking target

and regularly transmits UWB signals received by the anchors. For the data

collection phase, it is attached to a mobile robot. For the evaluation phase,

it is carried by a human/worker. We provide an exemplary and representa-

tive evaluation dataset for this. The data is recorded using a platform based

on the Decawave DW1000 UWB chip at a bandwidth of 499.2MHz and center

frequencies of 4− 6 GHz.
The ground truth of the transmitter position is collected using a millimeter-

accurate motion tracking system. The data is collected and synchronized by

2

an NTP server and pre-processed (corrupted datapoints are removed and RF

and positioning reference data are synchronized).

The main challenge this year is agent generalization. The majority of the pro-

vided data for the validation and training are collected by a mobile robot, while

the evaluation is based on the tracking of a worker in an industrial setting.

Note: Additional documentation and information on the recording setup will

be available in future version of this annex.

3 Dataset description

The training datasets are provided as a HDF5 file, that can be loaded by various

environments. As mentioned above there will be two datasets for the different

agents, where the significantly larger one is collected with a mobile robot as

agent. The files contain the CI and reference positions. Each data instance

(i.e. column of the HDF5) contains:

• rec time ([float]): the timestamp in s at which the CIR was received

at the receiver node. (This is the ”global time index” of the tracking prob-

lem)

• ci time (array[float]): the timestamps corresponding to the imagi-

nary and real parts of the CI in s. (This is the ”local time index” that can

be used to assign a distance to the CI values)

• burst id ([int]): the transmitter time index. This can be used for syn-

chronization. For clarity, at each of the burst IDs, the transmitter (i.e., the

mobile node) transmits an impulse that is received by a subset of the re-

ceivers (i.e, anchors). The complete set of CIRs from all anchors is not

available at all time steps (as at some receivers the detection was not

successful due to an insufficient channel and/or data corruption).

• ci real (array[int]) and ci imag (array[int]): the real and imagi-

nary parts of the CI as tuples. The CI is centered around the first distinct

peak and contains 366 samples each, which can be set in relation to

distance or time-of-flight by using cir time, as depicted in Fig. 2.

• anch id ([string]): the anchor id of the receiving anchor.

• The positions of the agent (i.e. the mobile tag, the transmitter) ref x,

ref y as float. The reference positions are corresponding to the re-

ceiver timestamp rec time.

Fig. shows two exemplary CI magnitudes, generated by combining the men-

tioned fields.

An additional .TXT-file (anchors.txt) containing the anchor/receiver posi-

tions is also available. It contains:

• anch ID [string] the anchor IDs.

3

Figure 2: Visualization of two exemplary recordings in a LOS and NLOS case:

the time labels of the x-axis are given in ci time, the corresponding mag-

nitudes on the y-axis are given by the complex numbered array defined by

ci real and ci imag

.

• p x, p y [float] positions of the anchors.

Note: We recommend using Python 3.7 or 3.8 and loading the data by using

the pandas library https: // pandas. pydata. org/ docs/ reference/ api/ pandas.

read_ hdf. html , if you have problems with the data format please do not hes-

itate to contact us.

Note: The final documentation will be available in future version of this

annex. There might be slight changes in the interface.

3.1 Submission

The submission of results is done via the EvaalAPI (https://evaal.aaloa.org/evaalapi/),

emulating a real-time localization setting. The general workflow for submission

is as follows:

1. the user initially requests the latest data (i.e. the sensor readouts of the

first N seconds) from the server, starting a new trial.

2. the user then estimates the position and sends it to the server. The server

then advances the locally maintained time by N seconds and sends all

sensor readouts that have occurred in this interval. This repeats until the

trail ends or an error occurs.

API Overview A user is given one or more unique trial names TRIAL and a

server URL for accessing the web API. The trial maintains a timestamp and a

4

https://pandas.pydata.org/docs/reference/api/pandas.read_hdf.html
https://pandas.pydata.org/docs/reference/api/pandas.read_hdf.html
https://evaal.aaloa.org/evaalapi/

position estimate. Initially, the timestamp is 0. The trial has not started, and

this can be verified with

GET /TRIAL/state

which will return a string starting with ”0,-1,” meaning that the trial has not

started yet. This initial string also contains the initial position (see Trial State

Information for details). The user then requests sensor data by issuing a HTTP

request like this

GET /TRIAL/nextdata

receiving all data-rows within the first 0.5s. Note that TRIAL is a variable; insert

the actual value provided to you for submission. After estimating the most up-

to-date position, the estimate is sent to the same endpoint via:

GET /TRIAL/nextdata?position=10.42,43.71,time=2.37

The timestamp is again advanced 0.5s and all data-rows falling into the new

interval are returned. All data-rows are returned as a JSON-formatted list in

temporally coherent order. All returned data falls in the interval starting from

the timestamp (included) at the last request (or, if it is the first request, from

0) to the recently advanced timestamp (excluded). If the received list is empty,

one of the following cases applies, depending on the HTTP return code:

200 no data is available for the requested interval, more data may be available

further on.

405 no more data is available for this trial because the trial has finished nor-

mally or a timeout has occurred.

Data format The returned data is given as a JSON-formatted list. Each item

in the list conforms to the description given in Section 3:

[

{

rec_time: ...,

ci_time: [...],

burst_id: ...,

ci_real: [...],

ci_imag: [...],

anch_id: "..."

}

]

The data can be conveniently parsed using pythons built-in JSON parser. The

position estimates are sent to the server through the URL in the nextdata

request:

GET /TRIAL/nextdata?position=<X>,<Y>,time=<T>

where <X> and <Y> are floating point interpret-able strings, corresponding to the

estimated spatial coordinates in the same format as for the training data, and

<T> the time for which the position is estimated (in case of regularly sampled

algorithms, there might not be an estimate at exactly the last trial time).

5

https://docs.python.org/3/library/json.html

Timeout Ideally, data should be exchanged in real-time, but this is not gener-

ally possible because of network processing delays and network latency. As a

compromise, a timeout framework is used. This framework constrains the time

taken to issue the next nextdata request. To introduce some error tolerance,

a slack time, i.e. buffer, allows for soft borders around those time constraints.

We define the following variables: let

p be the clock time of the previous nextdata request,

c be the clock time of the currently received nextdata request,

h be the time increment, which here is 0.5s,

V the speedup factor,

S the remaining slack time.

Any time, a nextdata request is received, the remaining slack time is updated

as follows:

S ← S −max(0,V · h− (c− p))

If at any point during the trial S < 0, the trial times out. The remaining slack

time r for the trial is computed like:

r = p+ V · h + S − t

with t the current clock time.

Trial state information GET /TRIAL/state allows the retrieval of all crucial

variables mentioned before. The request returns an ASCII one-line string of 7

comma-separated values:

TS is the current trial timestamp

r the remaining time until a timeout occurs

V the speedup factor

S the remaining slack time

p the server time at the previous nextdata request

h the time increment

PTS the timestamp of the last position estimate

POS the last position estimate.

Two special cases have to be considered: If TS=0, the trial has not yet started;

If TS=-1, the trial is finished. If the trial has finished regularly, r will be non-

negative. Otherwise, the trial did time out.

6

Resetting trials The GET /TRIAL/reload request is used to set the state of

the trial to not started. It only works for experimentation trials (see below). If

that is the case, it is put in the not started state and its state is returned.

Trial Kinds Any participant team can run up to 3 submission trials. This

gives a chance to catch-up if any issues happen. Although the competition

organizers will evaluate the three trials, only the best one will be considered for

the contest.

To allow participants experimentation with the API, each TRIAL will be avail-

able for experimentation by appending ” EXP” to it’s value. E.g. if TRIAL =

”TRIAL 1”, the experimentation trial will be reachable under "TRIAL 1 EXP".

The data provided in experimentation and submission trials will differ.

Note: The locations of the relevant endpoints will be available in future

version of this annex. There might be slight changes in the interface.

4 Challenge Objectives

For each setup (i.e. the trial) the initial position, perturbed by artificial additive

zero-mean white Gaussian noise of standard deviation 1m in x and y-directions,

is available: It is [TBD, TBD]m. The overall duration of both test datasets is

15 min.

• the timestamps t est [float] of the position estimates in s.

• the corresponding estimated positions x est and y est [float].

For evaluation, the produced result trajectories we will resample to regular time

intervals of 0.5 s using 1D-interpolation.

Note: For clarity, the input data are not available at a perfectly regular sam-

pling interval and the complexity of CIRs does not allow for direct interpolation

to obtain regularly spaced data. We will resample the data for fair comparison.

Additional information on this will be included in future versions of the annex

5 Exemplary approaches

The objective of the challenge is to use the presented sets of CI to estimate the

position of the tracked object. As mentioned in the introduction, different cate-

gories of positioning algorithms are possible for this task. For clarification, we

included a highly simplified description of a possible pipeline for each category.

Model Error Mitigation: An exemplary tracking pipeline could look like the

one depicted in Fig. 3: A ToF Estimation (Peak Tracking) algorithm is used to

identify the strongest peak in the CI implying the distance between transmitter

and receiver. An error mitigation algorithm, e.g. a machine learning approach,

trained on the available training data is also applied on the CI to estimate an

7

estimation error describing the difference in estimated an geometric difference

caused by environment interaction. The corrected distance estimates are then

processed in a tracking filter, producing a positioning result.

CI (Test Data) ToF Estimation / Peak
Estimation

Error Mitigation

Training Data

Positioning ResultTracking Filter

Figure 3: Exemplary Pipeline for a model error mitigation based system.

Fingerprinting: An exemplary positioning approach is sketched in Fig. 4: The

positioning problem is seen as a regression task, where the input consists of

the complete CI and the labels are the 2D-positions of the tracking target. For

instance, a deep learning algorithm can be used for this regression task, pro-

ducing positioning estimates, which are then smoothed using e.g. a Kalman

filter.

CI (Test Data) Fingerprinting

Training Data

Positioning ResultSmoothing

Figure 4: Exemplary Pipeline for a fingerprinting based system.

Channel SLAM: The presented dataset is not ideal for channel SLAM as it can-

not directly benefit from the training data. To mitigate this, we included the

coordinates of the reflector walls in the environment to initialize virtual anchor

hypotheses. A typical pipeline for a channel SLAM is depicted in Fig. 5. Distinct

multipath components (MPCs) are extracted from the CI using a channel esti-

mation algorithm. The channel SLAM algorithm then processes these by data

association with existing virtual anchors (i.e., characteristic reflecting surfaces)

and new virtual anchor hypotheses and uses the associated spatial information

for tracking e.g. in a Rao-Blackwellized particle filter.

8

CI (Test Data) MPC Extraction Positioning ResultChannel SLAM

Figure 5: Exemplary Pipeline for a channel SLAM system.

6 Evaluation metrics

The Euclidean distance between estimated and true results (each 2D-positions)

is the main evaluation metric. Specifically, third quartile is used as a perfor-

mance metric.

7 Download

You can download the training and validation datasets at tbd. Please don’t

hesitate contact us for any questions you might have.

References

[1] A. Molisch, “Ultra-wide-band propagation channels,” Proceedings of the

IEEE, vol. 97, pp. 353 – 371, 03 2009.

[2] S. Aditya, A. F. Molisch, and H. M. Behairy, “A survey on the impact of

multipath on wideband time-of-arrival based localization,” Proceedings of

the IEEE, vol. 106, no. 7, pp. 1183–1203, 2018.

[3] H. Wymeersch, S. Maranò, W. M. Gifford, and M. Z. Win, “A machine learn-

ing approach to ranging error mitigation for uwb localization,” IEEE transac-

tions on communications, vol. 60, no. 6, pp. 1719–1728, 2012.

[4] A. Niitsoo, T. Edelhäußer, and C. Mutschler, “Convolutional neural networks

for position estimation in tdoa-based locating systems,” in Proc. 9th Intl.

Conf. Indoor Positioning and Indoor Navigation, Nantes, France, pp. 1–8,

2018.

[5] C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, and U.-C. Fiebig,

“Multipath assisted positioning with simultaneous localization and map-

ping,” IEEE Transactions on Wireless Communications, vol. 15, pp. 1–1,

09 2016.

9

tbd

