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Abstract—This paper focusses on quantifying the localization
performance of exteroceptive sensors solely by virtue of their
sensor model using information theory. For the third track of the
EvAAL competition, we submit our probabilistic Wi-Fi sensor
model used for that research. We show the calculation of the
mean mutual information for this sensor model. When applying
Maximum Likelihood Estimation and k Nearest Neighbor as a
localization scheme to our sensor model, we obtain an average
Sample Error of 22.15 and 21.97, respectively, on the evaluation
dataset. Sample Error is the metric proposed by the EvAAL
competition.

Index Terms—Wi-Fi, Localization, Mutual Information

I. INTRODUCTION

This paper focusses on quantifying the localization per-
formance of exteroceptive sensors solely by virtue of their
sensor model. We define exteroceptive sensors as sensors that
perceive the environment, such as GPS, camera, LIDAR, or
Wi-Fi. Continuous localization, or tracking, is often aided by
sensors that perceive the state of the object to be localized,
like odometers, accelerometers, or gyroscopes, which we call
proprioceptive sensors. A localization algorithm uses measure-
ments from such exteroceptive or proprioceptive sensors, or a
combination of those, to improve its guess of the location of
the device being localized.

The localization performance of a specific sensor strongly
depends on the underlying sensor model. This model is respon-
sible for translating a sensor measurement into a likelihood
over all possible poses. A localization algorithm will use this
likelihood to obtain a pose estimation. The performance of a
localization algorithm is generally indicated as a mean distance
with a certain standard deviation between the estimated pose
and the true pose. While this is a valid metric to compare
localization algorithms, the additional processing and assump-
tions required in the localization algorithm can hide the actual
performance of the underlying sensor model. It also assumes
a unimodal Gaussian distribution for the pose estimate, which
is seldom correct.

We are working on a method to quantify the performance
of the sensor in a manner that is both more direct, i.e.,
not associated with a particular localization scheme, and
more general, i.e., not assuming the location estimates to

be normally distributed. Our method is based on the mean
mutual information between a pose in the environment and
the measurement that a sensor makes at that pose.

In order to compare our Wi-Fi sensor model with the state
of the art, we join the Evaluating Ambient Assisted Living
(EvAAL) competition of the Indoor Positioning and Indoor
Navigation (IPIN) 2015 conference. We submit our Wi-Fi sen-
sor model to the third, off-site track of the competition, which
is a Wi-Fi localization benchmark competition. It requires
competitors to evaluate their localization system on the huge
UJIIndoorLoc [1] Wi-Fi fingerprint database. We will present
the results of our sensor model by applying a simple Maximum
Likelihood Estimation (MLE) and k Nearest Neighbor (KNN)
algorithm to the localization posterior.

This paper is continued as follows. In Section II we describe
our method for calculating the mean mutual information and
our Wi-Fi sensor model. Next, we explain how we applied the
MLE and KNN localization algorithms. Finally, we introduce
the competition’s evaluation metric. In Section III we present
what mean mutual information the sensor model obtains in
the competition dataset and our results of applying the metric
to the evaluation dataset. Lastly, in Section IV we provide a
short conclusion.

II. METHODS

To quantify the localization performance of a sensor model,
we generalize the approach discussed by Steckel and Pere-
mans [2], where the mean mutual information is calculated be-
tween a pose and the measurements that can be performed at a
certain pose. In other words, what does a sensor measurement
tell us about our pose. We start with the mutual information
between two random variables as defined by Cover [3], and
use the notation from MacKay [4]:

I(X;Y ) ≡
∑

xy∈AXAY

P (x, y) log
P (x, y)

P (x)P (y)
, (1)

where X and Y are ensembles which are defined as triples
consisting of an outcome x and y, respectively, an alphabet
AX and AY , and the probabilities PX and PY . An outcome x
is a random variable that has a value from AX , say ao, with a
probability from PX , po. The number of elements in both AX

and PX is O, with ao having a probability of po. The function978-1-4673-8402-5/15/$31.00 c©2015 IEEE
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P (x) indicates the probability of the outcome x, which is
po in this situation. In the following, we define the ensemble
P = (p,AP ,PP ) for all possible poses in the environment,
assumed to be finite. A pose is defined as both a location and
a heading, hence our choice for P . To avoid confusion, the
function P (x) will always indicate the probability of x and we
will not use the shorthand p for the probability of x = a, but
use p to indicate a pose. We also define the ensemble Mpi =
(~mpi ,AMpi

,PMpi
) for all possible measurements at the pose

pi. We emphasize with our notation that a measurement is a
vector. Inserting our ensembles into Equation (1) gives:

I(P ;Mpi) ≡
∑

p~mpi
∈APAMpi

P (p, ~mpi) log
P (p, ~mpi)

P (p)P (~mpi
)

, (2)

where we assume that a logarithm is a base two logarithm,
thus the resultant mutual information is expressed in bits. A
measurement is sampled from the Gaussian distribution N of
the actual measurements at pose pi:

~mk,pi
= N

(
M+

pi ,ΣM+
pi

)
, (3)

where M+
pi

are the actual sensor measurements performed at
the pose pi; M+

pi is the sample mean of M+
pi

; and ΣM+
pi

is the
covariance matrix of M+

pi
.

The sensor model, i.e., the probability density function of
the sensor measurement ~m given the pose pj is described by:

P (~m | pj) =
1√

(2π)
|M+

pj
|
det Σm

(4)

exp

(
−1

2

(
~m−M+

pj

)T
Σ−1m

(
~m−M+

pj

))
,

where pj is an element of all possible poses P ; |M+
pj
| is

the dimension of the measurements in M+
pj

; and Σm is the
covariance matrix of the sensor model of the given sensor.

The posterior probability of the pose pj given a particular
sensor measurement ~m is calculated using Bayes:

P (pj |~m) =
P (~m | pj)P (pj)∑
p∈AP

P (~m | p)P (p)
, (5)

where we assume a uniform distribution for P (pj) since we do
not have any prior information about the pose. The marginal
probability of a measurement ~m performed at pose pi is not
known, so we first calculate the mutual information [3], [4]
between all possible poses P and the measurement ~mk,pi

:

I(P ; ~mk,pi
) =

∑
p∈AP

P (p|~mk,pi
) log

P (p | ~mk,pi)

P (p)
, (6)

where ~mk,pi
is a measurement sampled from the distribution

of the actual measurements at pose pi, see Equation (3).
Finally, we establish the mean mutual information by Monte

Carlo approximation [5] from the mutual information between
all possible poses P and the measurement ~mk,pi

as follows:

< I(P ;Mpi
) > ∼=

1

K

K∑
I(P ; ~mk,pi

), (7)

where K is the number of Monte Carlo samples. However,
since the UJIIndoorLoc database provides a validation dataset,
we will use this dataset to calculate the mutual information.

Our Wi-Fi sensor model is a probabilistic version of the
sensor model used in [6]. We define a measurement vec-
tor containing the received signal strength (RSS) values of
every access point in the environment, ~m = ~w, where
~w = {w1, w2, . . . , wA} with A the set of access points in
the environment, so wa is the RSS value of access point a in
measurement ~w. If the signal strength of an access point is very
low at a certain pose, our active RFID reader or Wi-Fi scanner
might not pick up the signal, and we say that we did not see the
access point at that pose. The vectors are compared by access
point to calculate the likelihood of pose pj . Assuming the
access points to be independently received, the sensor model
becomes:

P (~w | pj) =

A∏
a

P (wa | pj) , (8)

where ~w is a Wi-Fi measurement. We define four mutually
exclusive events when comparing the RSS values of an access
point in the set of measurements collected at pj denoted by
W+

pj
with our new measurement denoted by w: either a hit, a

miss, an extra, or a none. A hit occurs when the access point
has an RSS value both in the collection of measurements and
in the new measurement. A miss occurs when the access point
has an RSS value in the collection, but was not seen in the
new measurement. An extra occurs when the access point has
an RSS value in the new measurement, but was not seen in the
collection of measurements at pj . Lastly, a none occurs when
the access point was not seen both in the collection and in the
new measurement. The probability of wa in (8) is defined as:

P (wa | pj) =


P (wa, hit|pj) hit, (9a)
P (wa,miss|pj) miss, (9b)
P (wa, extra|pj) extra, (9c)
P (wa, none|pj) none, (9d)

denoting with W+
a,pj

the set of measurements collected at pose
pj that included access point a; wt a threshold RSS value,
under which our hardware will no longer detect an access
point—if we do not detect an access point, we say that we are
under this threshold. We define the four conditions as: hit is
W+

a,pj
6= ∅ and wa > wt, miss is W+

a,pj
6= ∅ and wa < wt,

extra is W+
a,pj

= ∅ and wa > wt, and none is W+
a,pj

= ∅
and wa < wt. The expressions in (9) can then be calculated
as:

P (wa, hit|pj) (10a)

=
1√

2πσw
exp−

(
wa −W+

a,pj

)2
2σ2

w

P (W+
a,pj
6= ∅|pj),

P (wa,miss|pj) (10b)

=
1√

2πσw

∫ wt

−∞
exp−

(
x−W+

a,pj

)2
2σ2

w

dxP (W+
a,pj
6= ∅|pj),
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P (wa, extra|pj) (10c)

=

∫ ∞
−∞

α

 1√
2πσw

∫ wt

−∞
exp−

(
x−W+

a,pj

)2
2σ2

w

dx


N

× 1√
2πσw

exp−

(
wa −W+

a,pj

)2
2σ2

w

dW+
a,pj

×P (W+
a,pj

= ∅|pj),

P (wa, none|pj) (10d)

=

∫ ∞
−∞

α

 1√
2πσw

∫ wt

−∞
exp−

(
x−W+

a,pj

)2
2σ2

w

dx


N

×

 1√
2πσw

∫ wt

−∞
exp−

(
x−W+

a,pj

)2
2σ2

w

dx

 dW+
a,pj

×P (W+
a,pj

= ∅|pj),

where σw is the sensor model’s kernel width; and P (W+
a,pj
6=

∅|pj) is the probability of measuring an access point at pose
pj . For Wi-Fi, the threshold wt is set to −89 dBm, based on
our hardware specifications. The kernel width is set to 3.46 dB,
based on [7].

In order to calculate our results in the EvAAL competition,
we must estimate a location based on the posterior distribution
after applying the sensor model. We assume a uniform distri-
bution over all poses, so the posterior distribution is in fact the
normalized likelihood. We calculated the result for two simple
localization algorithms, MLE and KNN with k = 4. The MLE
algorithm selects the location with the highest likelihood as its
estimate. KNN selects the k locations with highest posterior
probability. Then, it calculates a weighted average location
based on the posterior probability values. In fact, one could say
that we applied KNN twice, once with k = 1 and once with
k = 4. To deal with the floors and buildings, we also calculated
the weighted average floor and building and rounded these
averages to whole numbers. We recognize that more complex
algorithms are likely to produce better results, yet we are
interested in the mean mutual information of sensor models
before these algorithms are applied.

For the EvAAL competition, a performance metric is
created based on spatial error. The accuracy on which the
competitors will be ranked is the average sample error (SE)
for each sample in the validation dataset that will be provided
during the competition. The SE for a single sample is calcu-
lated as:

D =

√∑
x,y

(E −R)
2 (11)

SE = D + pen1 + pen2 (12)

where E is the pose estimated by the localization algorithm;
R is the real pose; pen1 is a penalty of 50, applied if the
localization algorithm does not predict the building correctly;

and pen2 is a penalty of 4, applied if the localization algorithm
does not predict the floor correctly.

The UJIIndoorLoc training dataset that is used in the
EvAAL competition has 933 unique locations with an average
of 20 samples per location. The covered area is 108 703 m2,
divided over four to five floors. For comparison, our own
typical testing environment, CPM.E2, has 660 unique Wi-
Fi sample poses, using a grid of (0.3 m, 0.3 m, 0.25π rad),
with usually one or two, but up to 32 samples per pose.
The covered area is 59.4 m2 of office floor, divided over
eight different orientations. This means that the UJIIndoorLoc
training dataset has many more samples, but that its sample
locations are much sparser than the sample poses in our
environment. Additionally, the UJIIndoorLoc training dataset
has 520 different Wi-Fi access points, of which there are 18
visible on average in a single sample. In our environment, there
are 67 different Wi-Fi access points, of which 10 are visible
on average in a single sample. Finally, the training dataset has
19937 samples, and the validation dataset has 1111 samples.

III. RESULTS

We will now present the mean mutual information of our
sensor model and the results of applying the MLE and KNN
localization algorithms on our Wi-Fi sensor model in the
UJIIndoorLoc evaluation database.

The cumulative distribution of mean mutual information
provided by our sensor model in the UJIIndoorLoc database,
calculated using the validation dataset, is shown in Fig. 1. The
maximum amount of mutual information in the environment,
9.87 bit, is reached in about 60 % of the samples, and an
additional 10 % with a value close to the maximum. This can
be seen by the steep increase at the 0.3 ratio of positions mark.
At these locations, the sensor model can indicates an exact
location at which it thinks the measurement to be sampled. The
localization posterior will behave like a Dirac delta function.
This location does not need to be correct, as can be seen in
Fig. 2, which will be discussed shortly. For the bottom 20 %
of samples the mean mutual information drops. The bottom
5 samples have 0 bit mutual information, which means that
their posterior location distribution is uniform.

In our usual environment, CPM.E2, the maximum amount
of mutual information is 9.03 bit. This is reached in only
very few poses. Since the environment is much more densely
sampled, as discussed before, there is less signal variation
between nearby poses than with the UJIIndoorLoc database.
The localization posterior will decrease more smoothly around
the estimated location, which causes a decrease in mutual
information.

As the large difference between average and median SE
in Table I suggests, the high average SE value is due to
large outliers. These seem to be mainly caused by floor and
building fails. The distribution of SE for MLE and KNN can
also be seen in Fig. 2. At first sight, it is rather striking that
using KNN but slightly improves the result, compared with
MLE. However, since our measurement model results in a
localization posterior that is very specific, and because we use
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Fig. 1. The mean mutual information between a location in the UJIIndoorLoc
validation database and measurements from the validation database, according
to our sensor model. For comparison, we also included this result for
our usual environment, CPM.E2, which are calculated using Monte Carlo
approximation.

TABLE I
EVAAL LOCALIZATION RESULTS.

Property MLE KNN

Average SE 22.15 21.97
Median SE 8.70 8.67
Average D 19.13 18.96
Median D 8.29 8.29

Building fail % 4.86 4.86
Floor fail % 14.76 14.58

a weighted version of the KNN algorithm, the additional poses
used to calculate the pose estimation are usually cancelled
because of their much lower posterior value.

IV. CONCLUSION

We showed the mean mutual information between locations
in the environment and measurements that could be performed
at those locations, interpreted by our probabilistic Wi-Fi sensor
model. We saw that for most samples in the UJIIndoorLoc
validation dataset, the mutual information between a sample
and the locations in the training database is very high. This
indicates a very selective posterior distribution, where only one
location has a higher location probability. As the sample error
suggests otherwise, this unwarranted certainty is likely caused
by our measurement model not handling the sparse samples
in the UJIIndoorLoc database very well, as compared with the
more densely sampled database that we built ourselves.

Accordingly, our localization algorithms do not seem to be
performing with a very high accuracy in the UJIIndoorLoc
database. The more sparsely sampled environment, compared
to our own environment, might be better incorporated in
a different localization algorithm. Such an algorithm might
simulate additional samples based on the training dataset to

sample error
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Fig. 2. Distribution of SE for the EvAAL UJIIndoorLoc validation database.

create a better model of the environment, or might determine
the building or floor on a hierarchical manner, to prevent
building and floor fails. Also note that our main focus is on
calculating the mean mutual information between a pose in the
environment and measurements performed at that pose, using
any probabilistic sensor model. It is likely that other local-
ization algorithms could incorporate the information provided
by the Wi-Fi sensor model to obtain a more accurate location
estimation.

REFERENCES

[1] J. Torres-Sospedra, R. Montoliu, A. Martnez-Usó, J. P. Avariento, T. J.
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