

Track4 "Foot-Mounted IMU based Positioning (off-site)" special features

Organizational aspects:

Database/dataset access

- This year we decided to change a little bit rules: even if Track4 is still an off-site track, we will ask to competitors to process data as if they were in real time. To do so, a new interface based on a web API has been developed: EvaalAPI. This API will be used by competitors for sending position estimates and reading the sensor readouts: https://evaal.aaloa.org/evaalapi/
- Participants can still download data usable for sensors bias estimation. Files will be accessible at the following URL:

http://evaal.aaloa.org/images/2021/track4/ (coming soon)

 For information, competitors can find training datasets of previous Track4 edition on Zenodo: IPIN2018-Track4: <u>https://zenodo.org/record/3228012</u> IPIN2019-Track4: <u>https://zenodo.org/record/3937220</u> IPIN2020-Track4: <u>https://zenodo.org/record/4668618</u>

Submission of the processed results

- As mentioned earlier, results have to be submitted via a web API. See above.
- A participant team can run the process up to 2 times. This lets a chance to catch-up if any issues happen. Although the competition organizers will evaluate the two trials, only the best one will be considered for the contest. For the first evaluation, dataset of <u>session1</u> will be used. For the second trial, dataset of <u>session2</u> will be used. These two datasets correspond to two different data collection performed on the same path but not at the same time.

Important deadlines:

- Data will be published, and accessible through web API the:
- **The deadline** for submitting the post-processed results is:
- Proclamation of winners:

OCTOBER 4th 2021 NOVEMBER 18th 2021 DECEMBER 2nd 2021

Scope

Many indoor navigation systems have been developed for pedestrians and assessing their performances is a real challenge. Benefiting from a reference solution that is accurate enough to evaluate other indoor navigation systems and assist novel research is of prime interest. According to ISO18305:2016 two different ways can be used for assessing indoor localization system: "Off-line surveyed test point" that is commonly used, or "reference system" with an accuracy at least one order of magnitude better the system you want to test. The scope of this track4 is clearly focused on the second way of assessing.

This track4 is based on the same material as previous competitions hold during IPIN2018, IPIN2019 and IPIN2020.

Competition Goal

The goal of this competition is to evaluate how good up-to-date INS algorithm is. Each competitor will have access to a dataset logged with ULISS (Ubiquituous Localization with Inertial Sensors and Satellites), a state-of-the-art Inertial Navigation System producing IMU data, MAG data, PRESSURE data & GNSS data, without the help of any maps.

ELEVENTH INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

on the starting point.

ULISS sensors axes

Description of Datasets

Data is recorded from 3 different sensors:				
Xsens Mti-7	IMU-Mag sensor: -3D accelerometer -3D gyrometer -3D magnetometer <u>https://www.xsens.com/mti-7</u>			
BMP280 sensor	Operation range: Pressure: 3001100 hPa Absolute accuracy : ~ ±1 hPa Relative accuracy : ± 0.12 hPa (typical) <u>https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp280/</u>			
Ublox ZED-F9P dual freq. receiver	Multi GNSS Receiver : BeiDou, Galileo, GLONASS, GPS / QZSS Number of concurrent GNSS 4 Dual GNSS Bands : L1C/A, L2C, L1OF, L2OF, E1B/C, E5b, B1I, B2I <u>https://www.u-blox.com/en/product/zed-f9p-module</u>			

Unit and meaning of the sensors outputs of ULISS are the following ones:

Column	Xsens MTi-1 (accelerometer)	Comments
1	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
2	Nano part of GPS Time of Week	Full GPS ToW = col1 + col2 / 1E9
3	Acc X (m/s²)	
4	Acc Y (m/s²)	
5	Acc Z (m/s²)	

Sample strings for accelerometer data

314410,3952000,-1.25709,-4.34142,8.75831	
314410,8947000,-1.23771,-4.28408,8.72497	
314410,13942000,-1.26714,-4.3795,8.72491	
314410,18937000,-1.26167,-4.29823,8.71566	
314410,23932000,-1.25662,-4.26479,8.71095	

Column	Xsens MTi-1 (gyrometer)	Comments
1	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
2	Nano part of GPS Time of Week	Full GPS ToW = col1 + col2 / 1E9
3	Gyro X (rad/s)	
4	Gyro Y (rad/s)	
5	Gyro Z (rad/s)	

Sample strings for gyrometer data

314410,4573000,0.00275338,-0.000805736,0.006387	
314410,9578000,-0.00576329,-0.00401807,0.00535798	
314410,14582000,0.00813067,0.00989926,0.00747764	
314410,19587000,0.00594413,-0.00079453,0.00529695	
314410,24591000,0.00488472,0.00237882,0.0117271	

Column	Xsens MTi-1 (magnetometer)	Comments
1	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
2	Nano part of GPS Time of Week	Full GPS ToW = col1 + col2 / 1E9
3	Mag X (a.u.)	a.u. = arbitrary unit according to Xsens.
4	Mag Y (a.u.)	Tips : multiply by 0.49*1000,
5	Mag Z (a.u.)	In order to get milliGauss (mG)

Sample strings for magnetometer data

314410,5162000,0.224368,0.435266,-1.14962	
314410,15162000,0.22387,0.434764,-1.14766	
314410,25162000,0.222876,0.438141,-1.1481	
314410,35162000,0.223393,0.433828,-1.14817	
314410,45162000,0.224333,0.431291,-1.1413	

Column	BMP280 (pressure)	Comments
1	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
2	Nano part of GPS Time of Week	Full GPS ToW = col1 + col2 / 1E9
3	Pressure (Pa)	

Sample strings for pressure data

		0						
ſ	314410,5162	2000,101	144					
	314410,2516	52000 , 10	1152					
	314410,4516	52000 , 10	1138					
	314410,6516	52000 , 10	1151					
	314410,8516	52000 , 10	1151					
1								-

Column	Temperature (temperarure)	Comments
1	GPS Time of Week (ToW) in second	GPS Time of Week (ToW) in second
2	Nano part of GPS Time of Week	Full GPS ToW = col1 + col2 / 1E9
3	Temperature (Degree Celsius)	

Sample strings for temperature data

314410,25162000,44.1914	
314411,25162000,44.1758	
314412,25162000,44.1758	

Column	Ublox F9P GNSS receiver (SBS)	Comments
1	GPS Week number	
2	GPS Time of Week (ToW) in second	

3	PRN (sat number)	EGNOS Satellite Id
4	-	Not used
5	Constant value ":"	
6	Hexadecimal WORD	Corresponds to EGNOS SBAS Message Format*

*: https://gssc.esa.int/navipedia/index.php/The EGNOS SBAS Message Format Explained

Sample strings for SBS (SBAS – EGNOS) data

2175	315499	123	18	:	9A494C000000000000400001F00003F80003FC0003FE0001FF0001FF80
2175	315618	136	24	:	5363FBFFDC0000000000197BBBAA01848160A0580B185BFDFEF980900
2175	315619	136	2	:	9A0A8003FE4027FFBFC7FEFFD4003FEC000003FB8003959559797BA380
-					

Ublox F9P GNSS receiver (OBS)	Comments
GNSS observation data	Observation file based on RINEX 3.04 format
	http://rtcm.info/RINEX 3.04.IGS.RTCM Final.pdf

Sample strings for OBS (observation file, based on RINEX 3.04 format) data

3.04 OBSERVATION DATA M: Mixed	RINEX VERSION / TYPE
RTKCONV demo5 b34c 20210923 145112	UTC PGM / RUN BY / DATE
format: u-blox UBX	COMMENT
log: D:\IPIN2021\DataCollection\2021.09.23_verif with F	ranceCOMMENT
	MARKER NAME
	MARKER NUMBER
	MARKER TYPE
	OBSERVER / AGENCY
	REC # / TYPE / VERS
	ANT # / TYPE
4337849.4702 -123594.0862 4658735.5346	APPROX POSITION XYZ
0.0000 0.0000 0.0000	ANTENNA: DELTA H/E/N
G 8 C1C L1C D1C S1C C2X L2X D2X S2X	SYS / # / OBS TYPES
R 8 C1C L1C D1C S1C C2C L2C D2C S2C	SYS / # / OBS TYPES
E 8 C1X L1X D1X S1X C7X L7X D7X S7X	SYS / # / OBS TYPES
S 4 C1C L1C D1C S1C	SYS / # / OBS TYPES
C 7 C2I L2I D2I S2I C7I D7I S7I	SYS / # / OBS TYPES
2021 09 15 15 20 09.1990000 GPS	TIME OF FIRST OBS
2021 09 15 16 03 42.4000000 GPS	TIME OF LAST OBS
G LIC	SYS / PHASE SHIFT
G L2X -0.25000	SYS / PHASE SHIFT
R LIC	SYS / PHASE SHIFT
R L2C	SYS / PHASE SHIFT
E LIX 0.00000	SYS / PHASE SHIFT
	SIS / PHASE SHIFT
	SIS / PHASE SHIFT
	7 / CLONASS SLOT / EDO #
R18 = 3 R23 - 3 R24 - 2	CLONASS SLOT / FRO #
C1C = 0.000 C1P = 0.000 C2C = 0.000 C2P = 0.000	CLONASS COD/PHS/BIS
	END OF HEADER
> 2021 09 15 15 27 36.1990000 0 12	
G04 24066762.037 8 126471694.10925 -3666.900	39.000
G09 21204418.682 8 9 -2579.258	24.000
G06 21843663.561 9 9 -3361.335	14.000
C24 24066200.488 4 9 -1496.777	42.000
C09 41038802.886 9 213699815.76337 -1391.943	30.000
R10 20885796.375 8 111333055.23728 -1125.414	35.000
R17 21027399.505 9 112521861.85837 1.771	31.000
G16 24420695.497 9 9 -607.284	34.000
E25 26416183.541 9 9 1623.139	22.000
R09 23641111.957 9 9 -3901.952	26.000
E24 27240945.515 8 9 -857.287	38.000
E05 27154158.133 8 9 -2871.781	35.000
> 2021 09 15 15 27 36.3990000 0 12	
G04 24066902.088 8 126472426.50726 -3656.825	35.000
G09 21204516.880 8 9 -2576.887	25.000
G06 21843791.401 9 9 -3361.335	14.000
C24 24066258.112 4 125319321.10437 -1491.643	44.000
C09 41038856.136 8 213700093.52228 -1387.629	30.000
RIU 20885839.907 8 111333279.85427 -1119.290	37.000

> 20	21 00 15 17 20	21 0070000 0 10						
C07	24638128 012	21.0070000 0 10 A 9	2275 081	43 000				
G09	22424741 675	4 -0 500 9	-955 661	50 000				
G03	26674681 751	4 140176422 500 6	-3636 344	47 000	26674678 108	9	9	_
2804	.250	25.000	0000.011	17.000	20071070.100	5	5	
G04	24071769.440	4 126498007.31728	-3013,200	48.000	24071770.003	9	7	_
2347	.817	27.000				-		
C24	26416433.672	2 137557308.209 7	754.198	49.000				
C14	25849654.595	2 134605934.893 6	-2756.586	46.000	25849646.713	8	9	-
2131	.866	31.000						
C09	42560860.631	4 9	-1445.346	40.000				
R17	24946541.057	9 9	3115.864	24.000				
R08	22003634.282	8 7	-1828.522	45.000				
R07	25163827.512	2 134703975.099 8	-3711.899	44.000	25163831.604	9	9	-
2882	.884	26.000						
R01	22197721.649	9 9	1128.883	25.000				
G20	25637162.698	9 9	2762.477	20.000				
G26	27350146.151	9 9	-313.516	30.000				
R10	24027352.119	4 128079371.572 7	2280.223	43.000				
R09	24316162.257	4 129846945.75628	-999.930	41.000				
E05	27654623.458	4 145326026.91917	-2614.866	46.000	27654624.165	8 111353711.570)17	-
2002	.352	28.000						
E03	25494806.465	9 133976111.99018	-446.883	43.000				
E24	29961715.263	4 9	1027.975	42.000	29961716.223	8	9	
790.	388 2	26.000						

Inputs given to competitors

The materials and methods provided by the competition organizers are:

- \circ $\;$ Datasheet of each individual sensors can be downloaded here:
 - Xsens MTI-1 : <u>http://evaal.aaloa.org/images/2021/track4/MTi-7_Leaflet.pdf</u>
 - Ublox ZED F9P GNSS Receiver: <u>http://evaal.aaloa.org/images/2021/track4/ZED-F9P_ProductSummary_(UBX-17005151).pdf</u>

http://evaal.aaloa.org/images/2021/track4/RINEX 3.04.IGS.RTCM Final.pdf

• LogFiles to download and to use before evaluation (for both session 1 and 2):

 2021.09.02_ULISS_AllanVariance.zip : static logfile of more than 15 hours that can be used for sensors bias estimation

http://evaal.aaloa.org/images/2021/track4/2021.09 ULISS AllanVariance.zip :

- acceleration.csv
- rotation.csv
- magnetic.csv
- pressure.csv
- temperature.csv
- 2021.09.15_ULISS_MagCalib.zip : logfile of about 1 minute that can be used to calibrate the magnetometer sensor

http://evaal.aaloa.org/images/2021/track4/2021.09.15 ULISS MagCalib.zip

- acceleration.csv
- rotation.csv
- magnetic.csv

ELEVENTH INTERNATIONAL CONFERENCE O INDOOR POSITIONING AND INDOOR NAVIGATION 29 Nov. – 2 Dec. 2021, Lloret de Mar, Spain

- **o** GNSS Navigation files that contain ephemeris for those who want to use GNSS sensor:
 - session1_gnss.nav: GNSS Navigation file for session1 (format RINEX 3.04) <u>http://evaal.aaloa.org/images/2021/track4/session1_gnss.nav</u>
 - session2_gnss.nav: GNSS Navigation file for session2 (format RINEX 3.04) http://evaal.aaloa.org/images/2021/track4/session2 gnss.nav
- Coordinates of Key Point n°1 (same for both session 1 and 2):
 - WGS84 longitude in decimal degrees: -1.6313191524195993
 - WGS84 latitude in decimal degrees: 47.22617430160391
 - Floor Number in integer: -1

• Coordinates of Key Point n°2 (same for both session 1 and 2):

•	WGS84 longitude in decimal degrees:	-1.631060453984984

- WGS84 latitude in decimal degrees: 47.22612380681056
- Floor Number in integer: -1

• Note about Maps use

- Even if maps may be allowed in others tracks, for this one, **it is NOT**. Track chairs, in such a case, could cancel contributions of competitor.
- Algorithms are not supposed to embed or access maps to enhance positioning.

Session 1: dataset recorded around 15h30, the 15th of September

• Timing of expected Key Points:

- \circ $\,$ 83 key points will be evaluated in Track4 : from 3 to 85 $\,$
- Key Points timestamps are expressed in GPS Time of Week in milliseconds (ms), hereafter in the table.

Key Point	GPS Time of	Key Point	GPS Time of	Key Point	GPS Time of
	Week		Week		Week
	(ms)		(ms)		(ms)
1*	308945294	30	309778168	59	310502561
2*	308960836	31	309881752	60	310567480
3	308976111	32	309893883	61	310580113
4	308990088	33	309906198	62	310592378
5	309002014	34	309917817	63	310601509
6	309014780	35	309972535	64	310615558
7	309022926	36	309984353	65	310628286
8	309029910	37	309993111	66	310676329
9	309039174	38	310002843	67	310688873
10	309145224	39	310024502	68	310699335
11	309186323	40	310039365	69	310783689
12	309202144	41	310054263	70	310810773
13	309207260	42	310071496	71	310823555
14	309225605	43	310087427	72	310980767
15	309250396	44	310106513	73	311008253
16	309263674	45	310173810	74	311035611
17	309279550	46	310183035	75	311052397
18	309291084	47	310205504	76	311064380
19	309305375	48	310258708	77	311094500
20	309320843	49	310293343	78	311282676
21	309330410	50	310306095	79	311361069
22	309512491	51	310324789	80	311390255
23	309527796	52	310343358	81	311412163
24	309556105	53	310353269	82	311418497
25	309568216	54	310363170	83	311428756
26	309594479	55	310372852	84	311439655
27	309677148	56	310446256	85	311460997
28	309755879	57	310476495		
29	309768646	58	310485099		
*: coordinates g	iven (see above)				

GPS time of week being the same as ones used in datasets, expect that unit here is millisecond (ms).

The output format is described in the chapter "Description of the Output File" here after.

Session 2: dataset recorded around 17h15, the 15th of September

• Timing of expected Key Points:

- \circ $\,$ 83 key points will be evaluated in Track4 : from 3 to 85 $\,$
- Key Points timestamps are expressed in GPS Time of Week in milliseconds (ms), hereafter in the table.

Key Point	GPS Time of	Key Point	GPS Time of	Key Point	GPS Time of
	Week		Week		Week
	(ms)		(ms)		(ms)
1*	314464119	30	315298217	59	316002074
2*	314479680	31	315405177	60	316067544
3	314494550	32	315417901	61	316079626
4	314508178	33	315430545	62	316092067
5	314519029	34	315441137	63	316100796
6	314531177	35	315498639	64	316115968
7	314539394	36	315511795	65	316131648
8	314546146	37	315523122	66	316177077
9	314554692	38	315534042	67	316189403
10	314653472	39	315556677	68	316200670
11	314690208	40	315573167	69	316284229
12	314704715	41	315588007	70	316309169
13	314709778	42	315603373	71	316319587
14	314726705	43	315617840	72	316477414
15	314751531	44	315636094	73	316506845
16	314763828	45	315683853	74	316534418
17	314779473	46	315695036	75	316550102
18	314791153	47	315718421	76	316559894
19	314805333	48	315766314	77	316587909
20	314820570	49	315799477	78	316791764
21	314830328	50	315812175	79	316885342
22	315014273	51	315830200	80	316909820
23	315029267	52	315846496	81	316926458
24	315059662	53	315855041	82	316933781
25	315071840	54	315863442	83	316944035
26	315092353	55	315872961	84	316955015
27	315196607	56	315947424	85	316976482
28	315276853	57	315974505		
29	315288742	58	315984551		
*: coordinates o	iven (see above)				

GPS time of week being the same as ones used in datasets, expect that unit here is millisecond (ms).

The output format is described in the chapter "Description of the Output File" here after.

Description of the Output stream to return by competitor

- For each trial, competitor is asked to give processed data with the following format:
 - 5 fields :
 - Field 1: Timestamp in ms
 - Field 2: WGS84 longitude in decimal degrees with at least 9 decimal digit resolution
 - \circ Field 3: WGS84 latitude in decimal degrees with at least 9 decimal digit resolution
 - \circ Field 4: Floor Number in integer (0 : Ground Floor, -1, 1, 2)
 - Field 5: index in integer (key point number from 1 to N. 0 represents no key point. Each specific integer represents the specific key point)
 - Comma (",") used as data delimiter

Example :

Evaluation will only take into account the estimated position at each indexed key point position, so that each track is considered as a series of key point positions (from 1 to N).

<u>In others words</u>: column 1 will not be assessed, and thus can be slightly different from the expected time. What is important is to put correctly the right key point id in field n°5.

Evaluation criterion

The final metric will be based on the accuracy for the correct floor detection and the horizontal positioning error. In particular, the score for comparing the different location systems will be based on the following equations:

Accuracy Score = $3rdQuartile{SampleError(R_i, E_i)}, \forall$ groundtruth reference in all final test sets SampleError(R_i, E_i) = Distance(R_i, E_i) + (penalty × floorfail)

where:

- "3rdQuartile" is the third quartile error, in meters, of a cumulative error distribution function, i.e., the error value that includes 75% of estimations (sample errors) with a lower error.
- *R_i* is the actual position (ground truth).
- E_i is the predicted position by the method proposed by the contest participant.
- floorfail is the absolute difference between actual floor and the predicted one.
- penalty is used to penalize errors in estimating the floor. penalty is set to 15 m.

• Distance (R_i, E_i) calculates the Euclidean distance between coordinates (longitude and latitude) of R_i and E_i .

The team with the lower "Accuracy Score" wins.

Contact points and information

For any further question about the database and this competition track, please contact to:

- Miguel Ortiz (<u>miguel.ortiz@univ-eiffel.fr</u>) at the University Gustave Eiffel, France.
- Ni Zhu (<u>ni.zhu@univ-eiffel.fr</u>) at the University Gustave Eiffel, France.

Introduced changes

For any further question about the database and this competition track, please contact to:

Version 1.0	September 3 rd	Initial Submission
Version 2.0	September 30 th	Change from PERSY sensor to ULISS sensor. New data, and its format are described. Clarification on the two different sessions that will be proposed to competitors.