A Real-time Indoor Tracking System by Fusing Inertial Sensor, Radio Signal and Floor Plan.

Jose Luis Carrera, Zhongliang Zhao, Torsten Braun
Communication and Distributed System Group
Institute of Computer Science
University of Bern

6 October, 2016
Outline

- Proposed Indoor Positioning System
 - Inertial Sensor Component.
 - Radio Information Component.
 - Floor Plan Information Component.
 - Data Fusion Component.
- Implementation
 - Inertial Measurement Unit (IMU) process.
 - Ranging process.
 - Particle Filter.
- Experiments
- Preliminary Results
- Conclusions
Proposed Indoor Positioning System

- Inertial Sensor Component (ISC)
 - IMUs → Move Detection
 - IMUs → Motion Vector
 - IMUs → Map Constraints
 - IMUs → Ranging

- Floor Plan Component (FPC)
 - Map Floor → Map Constraints
 - Map Floor → Data Fusion Component (DFC)

- Radio Inf. Component (RC)
 - Power → Ranging
 - Ranges → Particle Filter
 - Ranges → Location

- Data Fusion Component (DFC)
 - Map Likelihood → Particle Filter

- Position Monitoring
Inertial Sensor Component

Accelerometer:
- Linear acceleration.

Gyroscope
- Angular rotation velocity

Magnetometer
- Azimuth value

Radio Information Component

Signal Power \rightarrow NLR \rightarrow Ranges

Non-Linear Regression Model [1]

\hat{d}_i = \alpha_i \cdot e^{\beta_i \cdot \text{RSS}_i}

Floor Plan Information Component

Map Constraints
Map Floor
Map Likelihood

Define “allowed” zones

Data Fusion Component

Bayesian Filter

- Represents a PDF as a set of samples (particles).
- Model of how state changes in time.
- Model of what observations you should see.
- Belief of the current state given all the observation so far.
Implementation
Ranging I
Implementation

Ranging II

Non-Linear Regression Model

\[\hat{d}_i = \alpha_i \cdot e^{\beta_i \cdot \text{RSS}_i} \]
Implementation
Inertial Measurement Unit I

Accelerometer

Step Recognition

\[\hat{a}_{z,t} > \text{Threshold} \quad \&\& \quad \hat{a}_{z,t-1} < \hat{a}_{z,t} \quad \&\& \quad \hat{a}_{x,t} < \hat{a}_{z,t} \quad \&\& \quad \hat{a}_{y,t} < \hat{a}_{z,t} \]
Implementation
Inertial Measurement Unit II

Magnetometer, Accelerometer

Heading Orientation

OffsetX: Inclination X axis Magnetic North
Azimuth: Magnetic North and Y axis

\[\theta = (\text{OffsetX} - \text{Azimuth}). \]

\[st = \text{stride length}. \]
Implementation
Particle Filter

Particle Propagation

Particle Correction And Resampling

System State

Motion Vector
\[X = \hat{st} \cdot \cos(\theta) \]
\[Y = \hat{st} \cdot \sin(\theta) \]

Likelihood

RSS observation
- Ranging
- Constraints

Floor Plan

System State

\[x_k = \sum_{i=1}^{N_s} w_k^i x_k^i \]

Particle Correction

Resampling

\[w_k^i = \hat{w}_k^i / \sum_{n=1}^{N_s} \hat{w}_n^i \]
Experiments

EXPERIMENT 1
- University of Bern.
- Target area: 336 m² (3 floors)
- 12 Check Points

EXPERIMENT 2
- University of Geneva.
- Target area: 192 m²
- 9 Check Points
Results

(a) Particle Filter vs PDR, Scenario 1

(b) Particle Filter vs PDR, Scenario 2

<table>
<thead>
<tr>
<th>Tracking Approach</th>
<th>Mean error</th>
<th>S.D</th>
<th>90% Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Filter Scenario 1</td>
<td>1.7m</td>
<td>1.0m</td>
<td>3.2m</td>
</tr>
<tr>
<td>Particle Filter Scenario 2</td>
<td>1.9m</td>
<td>1.27m</td>
<td>4.3m</td>
</tr>
<tr>
<td>PDR Scenario 1</td>
<td>6.2m</td>
<td>2.9m</td>
<td>10.5m</td>
</tr>
<tr>
<td>PDR Scenario 2</td>
<td>5.1m</td>
<td>4.25m</td>
<td>15.7m</td>
</tr>
</tbody>
</table>
Conclusions

- Tested complex scenario. Room entrance prone to error.
- Proposed Ranging-PF assisted approach higher accuracy, stable than PDR.
- PF outperforms PDR around 72.6% with 90% accuracy.
- Use RSSI-based ranging information to recalibrate PDR to deal with accumulative errors.
- RSSI-based ranging information requires ANs position.
- Remarks from competition
 - Outdated AP locations/MAC information provided
 - Large scenarios (50000 m²) take long survey period
 - Ranging or fingerprinting?
Questions?

www.cds.unibe.ch